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Abstract

A key task in Artificial Intelligence is learning effective policies for controlling
agents in unknown environments to optimize performance measures. Off-policy
learning methods, like Q-learning, allow learners to make optimal decisions based
on past experiences. This paper studies off-policy learning from biased data in
complex and high-dimensional domains where unobserved confounding cannot
be ruled out a priori. Building on the well-celebrated Deep Q-Network (DQN),
we propose a novel deep reinforcement learning algorithm robust to confounding
biases in observed data. Specifically, our algorithm attempts to find a safe policy
for the worst-case environment compatible with the observations. We apply our
method to twelve confounded Atari games, and find that it consistently dominates
the standard DQN in all games where the observed input to the behavioral and
target policies mismatch and unobserved confounders exist.

1 Introduction

Over the last decade, reinforcement learning (RL) has gained significant popularity for solving
complex sequential decision-making problems, primarily due to its integration with deep learning
techniques [25, 53, 84]. This approach, known as deep reinforcement learning (deep RL), is par-
ticularly effective in high-dimensional state spaces [41, 62, 71, 85, 86, 89]. Deep RL addresses the
challenges faced by earlier RL methods by extracting various abstractions from data in complex
domains with minimal prior knowledge. For example, a classic algorithm known as Deep Q-Network
(DQN) algorithm can efficiently learn from visual inputs containing thousands of pixels [62], enabling
problem-solving capabilities comparable to humans in certain high-dimensional environments, such
as Atari games for the first time. These achievements were followed by notable advancements
in deep RL, including mastering the game of Go [90], defeating world-class professionals at the
game of poker [65]. Deep RL has also shown potentials in various real-world applications like
robotics [71, 89], autonomous driving [50] and protein design [41]. These advancements eventually
culminated in Sutton and Barto receiving the Turing Award in 2025 [23].

This paper attempts to leverage the capabilities and insights of DQN, while identifying an important
assumption embedded in this algorithm and its variants that does not necessarily hold in the real world.
Particularly, we notice that it is often implicitly assumed through the (PO)MDPs [94] framework
or explicitly enforced during the data-collection that no unmeasured confounder (NUC, [11, 79])
affects the observed action and the subsequent outcomes. When the NUC does not hold, the effect of
the target policy is generally not identifiable, i.e., the model assumptions are insufficient to uniquely
determine the value function from the offline data [73, 112]. On the other hand, partial identification
is a line of methodologies that enable the derivation of informative bounds on target effects from
confounded observations in non-identifiable settings [60]. It has been studied under the rubrics
of causal inference [7, 116], econometrics [19, 36, 63, 76, 80, 93, 100], and dynamical systems
[6, 15, 21, 64, 70]. More recently, researchers have been using partial identification methods to obtain
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reliable off-policy evaluation in reinforcement learning [18, 40, 44, 45, 48, 49, 55, 68, 112, 114].
Despite these achievements, significant challenges still exist in applying partial identification for
policy learning in complex and high-dimensional domains, including images and videos. We refer
readers to App. A for a more detailed survey on partial identification and deep reinforcement learning.

This paper aims to address these challenges by investigating deep reinforcement learning algorithms
from offline data over complex and high-dimensional domains, where the presence of unmeasured
confounders could not be assumed away a priori. More specifically, our contributions are summarized
as follows. (1) We introduce a novel DQN algorithm, which we call Causal DQN, capable of learning
robust abstractions from confounded data over complex and high-dimensional domains with minimal
prior knowledge. (2) We empirically demonstrate that our method significantly improves robustness
and generalization under confounded observations and outperforms various DQN baselines across
twelve popular Atari games. Due to space constraints, details of the experiment setup and additional
experiments are provided in Apps. D and E. Videos of gameplay are included in the supplemental.

Notations. We will consistently use capital letters (V ) to denote random variables, lowercase letters
(v) for their values, and cursive V to denote the their domains. We use bold capital letters (V ) to
denote a set of random variables and let |V | denote its cardinality of set V . Finally, 1Z=z is an
indicator function that returns 1 if event Z = z holds true; otherwise, it returns 0.

2 Challenges Due to Unobserved Confounders

We will focus on a sequential decision-making problem in the Markov Decision Process (MDP,
[78]) where the agent intervenes on a sequence of actions to optimize subsequent rewards. Standard
MDP models focus on the perspective of learners who could actively intervene in the environment.
Consequently, confounding is generally assumed away a priori. On the other hand, when considering
off-policy data collected from passive observations, the learner does not necessarily have the liberty
to control how the behavioral policy generates the data, giving rise to unobserved confounders in
decision-making tasks [27, 44, 52, 82, 115]. In this paper, we will consider a generalized family of
confounded MDPs [14, 45, 55, 113, 114] explicitly modeling the presence of unobserved confounders
in the off-policy data generation.
Definition 2.1. A Confounded Markov Decision Process (CMDP) M is a tuple of →S,X ,Y,U ,F , P ↑
where (1) S,X ,Y are, respectively, the space of observed states, actions, and rewards; (2) U
is the space of unobserved exogenous noise; (3) F is a set consisting of the transition function
fS : S↓X↓U ↔↗ S , behavioral policy fX : S↓U ↔↗ X , and reward function fY : S↓X↓U ↔↗ Y ;
(4) P is an exogenous distribution over the domain U .
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Figure 1: Causal diagram representing
the data-generating mechanisms in a Con-
founded Markov Decision Process.

Throughout this paper, we will consistently assume the
action domain X to be discrete and finite, while the
state domain S could be complex and continuous; the
reward domain Y is bounded in a real interval [a, b] ↘ R.
Consider a demonstrator agent interacting with a CMDP
M, generating the off-policy data. For every time step
t = 1, . . . , T , the environment first draws an exogenous
noise Ut from the distribution P (U); the demonstrator
then performs an action Xt ≃ fX(St, Ut), receives a
subsequent reward Yt ≃ rt(St, Xt, Ut), and moves to the next state St+1 ≃ fS(St, Xt, Ut). The
observed trajectories of the demonstrator (from the learner’s perspective) are summarized as the
observational distribution P (X̄1:T , S̄1:T , Ȳ 1:T ), i.e.,

P (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)
T∏

t=1

(∫

U
1st+1=fS(st,xt,ut)1xt=fX(st,ut)1yh=fY (st,xt,ut)P (ut)

)

Fig. 1 shows the causal diagram G [10] describing the generative process of the off-policy data in
CMDPs. More specifically, solid nodes represent observed variables Xt, St, Yt, and arrows represent
the functional relationships fX , fS , fY among them. By convention, exogenous variables Ut are often
not explicitly shown in the graph; bi-directed arrows Xt ≃↗ Yt and Xt ≃↗ St+1 indicate the
presence of an unobserved confounder (UC) Ut affecting the action, state, and reward simultaneously.
These bi-directed arrows (highlighted in blue) represent the unobserved confounders among action
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Xt, reward Yt, and state St+1 in the off-policy data, violating the condition of NUC [11, 79]. Such
violations could lead to challenges in off-policy learning.

Off-Policy Learning. A policy ω in a CMDP M is a decision rule ω(xt | st) mapping from
state to a distribution over action domain X . An intervention do(ω) is an operation that replaces
the behavioral policy fX in CMDP M with the policy ω. Let Mω be the submodel induced by
intervention do(ω). The interventional distribution Pω(X̄1:T , S̄1:T , Ȳ 1:T ) is defined as the joint
distribution over observed variables in Mω , i.e.,

Pω(x̄1:T , s̄1:T , ȳ1:T ) = P (s1)
T∏

t=1

(
ω(xt | st)T (st, xt, st+1)R(st, xt, yt)

)
(1)

where the transition distribution T and the reward distribution R are given by, for h = 1, . . . , H ,

T (st, xt, st+1) =

∫

U
1st+1=fS(st,xt,ut)P (ut), R(st, xt, yt) =

∫

U
1yt=fY (st,xt,ut)P (ut) (2)

For convenience, we write the reward function R(s, x) as the expected value
∑

y yR(s, x, y). Fix
a discounted factor ε ⇐ [0, 1]. A common objective for an agent is to optimize its cumulative
return Rt =

∑↑
i=0 ε

i
Yt+i. We define the optimal action-value function Q→(s, x) as the maximum

expected return obtainable by following any policy ω, after seeing a state s and taking an action
x, Q→(s, x) = maxω EXt↓x,ω [Rt | St = s]. One could solve for an optimal policy by iteratively
evaluating the action-value function using the Bellman Optimality Equation [12] given by,

Q→(s, x) = EXt↓x

[
Yt + εmax

x→
Q→(St+1, x

↔) | St = s

]
(3)

In off-policy evaluation, the agent (i.e., learner) attempts to learn an optimal policy by leveraging
the observed data generated by a different behavior policy fX (demonstrator). When there is no
unmeasured confounder (NUC) introducing spurious correlations between action and subsequent
outcomes, one could identify the parameterizations of the transition distribution T and reward
function R from the observed data, i.e.,

T (st, xt, st+1) = P (st+1 | st, xt) , R(st, xt, yt) = P (yt | st, xt) (4)

When the above identification formula hold, several off-policy algorithms have been proposed to
estimate the effect of candidate policies from finite observations [39, 42, 43, 66, 77, 95, 105, 106].
Together with the computational framework of deep learning, these methods could be further extended
to complex domains [62, 71, 85, 86, 89]. However, NUC could be fragile in practice and does not
necessarily hold due to some violations in the generative process. In these situations, applying
standard off-policy methods may fail to converge to an optimal policy, despite using powerful deep
learning models. The following example illustrates such challenges in a classic Atari game.
Example 1 (Confounded Pong). Consider the Pong game in the classic Atari suite. As for the
behavior policy, we use a pre-trained high-performing actor-critic agent [2] with residual blocks [30]
and Long Short-Term Memory (LSTM, [33]) layers. Fig. 2a shows a saliency map visualizing the
learned policy. Simulation results show that this policy is optimal. For example, this agent can deliver
a “kill shot” by directing the ball to a location that the opponent is unlikely to intercept given its
current location. We use this agent as the demonstrator in the off-policy learning task.

We now consider an alternative agent that learns to play Pong by observing the demonstrator’s
gameplay trajectories. This learning agent has a simpler neural network architecture and an impaired
sensory capability: it can only observe movements in its nearby surroundings. Fig. 2b shows the
learner’s visual input; the board’s left-hand side and the upper side, including the opponent’s position
and score, is now masked. In this case, the opponent’s position becomes an unobserved confounder,
introducing spurious correlations between the demonstrator’s action and observed outcome. For
example, the behavioral policy tends to hit the ball toward the center only when the opponent is
positioned at either corner and unable to return it. As a result, center shots appear more effective than
they truly are, due to confounding resulted from the masked opponent’s position.

To validate whether the standard deep RL algorithms are robust to confounding biases, we train two
DQN learners on masked trajectories from the demonstrator: one is the standard convolutional neural
network based DQN (Nature DQN, [62]), the second one is an LSTM-based [29]. We also include a
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(a) (b) (c) (d)

Figure 2: (a) A saliency map of the behavioral policy in Pong that tracks the opponent’s location and
score board; (b) a confounded Pong game where the opponent’s location and score board is masked;
(c) a saliency map of the conservative policy focusing on only itself and the ball; (d) the average
return of our causal DQN and the standard DQN baselines. Baseline curves are overlapped.

standard DQN that learns directly in the masked Pong game without confounded demonstrations as a
baseline. The simulation results, shown in Fig. 2d, indicate that none of those DQN variants is able to
converge to an effective policy. Learning directly with impaired observation in Atari is challenging,
while incorporating confounded demonstrations directly also does not enhance the convergence of
DQN agents; instead, it negatively impacts their learning performance. ↭

3 Confounding Robust Deep Q-Learning

In this section, we will introduce partial identification methods for off-policy learning that are robust
to unobserved confounding. Recently, Zhang & Bareinboim [114] extended the well-celebrated
Bellman equation to allow one to lower bound the state-action value function Qω(s, x) with a closed-
form solution Qω(s, x), which can be consistently estimated from the confounded observations. We
extend this result to obtain a lower bound for the optimal value function.
Proposition 3.1 (Causal Bellman Optimality Equation). For a CMDP environment M with reward
signals Yt ⇐ [a, b] ⇒ R, its optimal state-action value function Q→(s, x) ⇑ Q→(s, x) for any
state-action pair (s, x) ⇐ S ↓ X , where the lower bound Q→(s, x) is given by as follows,

Q→(s, x) = P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s↔)max
x→

Q→(s
↔
, x

↔)

)
(5)

+P (¬x | s)
(
a+ εmin

s→
max
x→

Q→(s
↔
, x

↔)

)
(6)

where P (x | s) = P (Xt = x | St = s) and P (¬x | s) = 1 ⇓ P (x | s); T̃ and R̃ are nominal
transition distribution and reward function computed from the observational distribution, i.e.,

T̃ (s, x, s↔) = P (St+1 = s
↔ | St = s,Xt = x) , R̃ (s, x) = E [Yt | St = s,Xt = x] (7)

Prop. 3.1 lower bounds the expected return of an optimal policy ω
→ using the return of a pessimistic

policy ω
→ that optimizes a worst-case CMDP instance M compatible with the observational data.

The lower bound is set as the expected return of the pessimistic policy ω
→ in the worst-case CMDP

M, i.e., Q→(s, x) ↫ Qω↑(s, x;M). Since ω
→ is optimal in the ground-truth CMDP environment

M, we must have Q→(s, x;M) ⇑ Qω↑(s, x;M) ⇑ Qω↑(s, x;M). Optimizing the lower bound in
Prop. 3.1 leads to a pessimistic policy with a performance guarantee in the ground-truth environment.
Among quantities in the lower bound Prop. 3.1, nominal transition distribution T̃ and nominal reward
function R̃ are functions of the observational distribution, and, at least in principle, are consistently
estimable from the sampling process. The lower bound Q→(s, x) can thus be further written as:

Q→(s, x) = E
[
1Xt=x

(
Yt +max

x→
Q→(St+1, x

↔)
)
+ 1Xt ↗=x

(
a+min

s→
max
x→

Q→(s
↔
, x

↔)
)
| St = s

]
(8)
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Algorithm 1 Causal Deep Q-Learning (Causal-DQN)
1: Initialize replay memory D
2: Initialize action-value function Q→(·; ϑ) with random weights ϑ
3: for episodes = 1, . . . ,M do

4: Sample initial state s1

5: for t = 1, . . . , T do

6: Observe an action xt taken by the demonstrator and subsequent reward yt and state st+1

7: Store transition (st, xt, yt, st+1) in D
8: Sample a minibatch of transitions {(si, xi, yi, si+1)}Bi=1 from D
9: Set value target wi(x) for every action x ⇐ X w.r.t sample (si, xi, yi, si+1),

wi(x) =

{
yi + εmaxx→ Q→(si+1, x

↔; ϑ) if x = xi

a+ εmins→ maxx→ Q→(s↔, x↔; ϑ) if x ⇔= xi
(11)

10: Perform a gradient descent step on
∑

x

(
wi(x)⇓Q→(si, x; ϑ)

)2 according to Eq. (10)
11: end for

12: end for

(s, x)

S1

X1

s*
S2

=
x

→=
x

Figure 3: Backup
diagram for causal
deep Q-learning.

In the above equation, Yt and St are observed variables drawn from the
nominal reward function R̃ and transition distribution T̃ in Eq. (7), respectively.
Fig. 3 shows a backup diagram illustrating this update step. Like the standard
Bellman optimality equation (Eq. (3)), Eq. (8) recursively updates the value
function based on the current estimates of the optimal value function. On
the other hand, Eq. (8) explicitly accounts for the off-poicy nature of the
confounded observations: when the behavior policy takes the same action
xt = x as the target action, the update follows standard Bellman equation and
uses the next sampled state st; when the sampled action xt ⇔= x differs from
the target, our algorithm updates, instead, using the value function associated
with the next worst-case or best-case state s

→, corresponding to the estimation
of the lower bound and upper bound respectively.

By using the causal Bellman equation of Eq. (8) as an iterative update, one
could apply standard value iteration to obtain a robust policy against the confounding bias in the
off-policy data [114]. In practice, however, this approach could be computationally challenging for
complex and high-dimensional domains. Like many deep reinforcement learning algorithms [62], we
will use a neural network with weights ϑ, called Q-network, to approximate the lower bound over the
state-action value function, i.e., Q→(s, x; ϑ) ↖ Q→(s, x). We will train a Q-network by minimizing a
sequence of loss functions Li(ϑi) at each iteration i. Formally,

Li(ϑi) = Es↘ε(·)

[
∑

x

(
Wi(x)⇓Q→(s, x; ϑi)

)2


(9)

where function Wi(x) is defined as the right-hand side of the update procedure Eq. (8); and ϖ(s)
is the state occupancy distribution in the observed Markov chain under the behavioral policy. The
parameters from the previous iteration ϑi≃1 are held fixed when optimizing the loss function. Note that
the above loss function attempts to minimize the error of the Q-network bound over all actions. The
reason is that, in the causal Bellman update (Eq. (8)), the next observed action contains information
about the lower bound across all actions, regardless of whether it matches the actual action taken.
Differentiating the loss function with respect to the weights, we arrive at the following gradient,

↙ϑiLi(ϑi) = Es↘ε(·)

[
E
[
∑

x

(
Wt(x)⇓Q→(s, x; ϑi)

)
↙ϑiQ→(s, x; ϑi) | St = s


(10)

Details of our proposed algorithm, called Causal Deep Q-Learning (Causal-DQN), are provided in
Algo. 1. Like the standard DQN [62], our algorithm utilizes experience replay [58]. Particularly, it
stores trajectories observed at each time step, represented as (st, xt, yt, st+1), in a replay memory
D that is pooled from many episodes. During the inner loop of the algorithm, we apply minibatch
stochastic gradient descent to samples of experience (si, xi, yi, si+1) ∝ D, which are randomly
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drawn from the pool of stored samples. On the other hand, our proposed causal algorithm made the
following augmentations compared to the standard DQN. First, Causal-DQN is an off-policy learning
algorithm and does not actively intervene in the environment. At step 6, instead of exploiting the
Q-network being trained, it queries the demonstrator to generate a confounded transition sample.
Second, at Step 9 during the experience replay, Causal-DQN utilizes the causal Q-learning updates of
Eq. (10), which is robust to the potential presence of confounders. Particularly, when the observed
action xi is equal to the evaluated action x, the algorithm follows the standard Q-learning update.
Otherwise, it performs the update using a lower-bound a over the immediate reward and the value
function at the worst-case next state s↔. The worst-case state s↔ is empirically estimated by repeatedly
sampling the next possible states at random, and taking the one with the smallest value function
estimate. These augmentations improve Causal-DQN over its non-causal counterpart in terms of
robustness and sample efficiency, as it is able to utilize the abundant observational data to improve
the evaluation of the state-action value function.
Example 2 (Confounded Pong continued). Consider again the confounded Pong game described
in Example 1. We train a Causal DQN agent with the masked observed trajectories. Fig. 2c shows
the saliency map visualizing the learned policy. Our proposed method learns a conservative policy
focusing on only tracking the ball location instead of opponent’s location. Simulation results show
that this conservative policy is able to achieve comparable performance to the optimal demonstrator
using the full board information. Analyzing the gameplay video reveals that our causal DQN agent
learns to proactively place the ball in either corner, where the hard-coded AI opponent is unable to
return. See the gameplay video in the supplementary materials for more details. ↭

4 Experiments

In this section, we aim to demonstrate the robustness and performance improvement of our proposed
Causal-DQN under confounded settings. For a comprehensive evaluation of Causal-DQN, we choose
twelve popular Atari games from the Gymnasium benchmark [101] and design the corresponding
confounded versions. See below and also App. C for our detailed design of confounded Atari games.
For a fair comparison, we also use vanilla DQN with little modifications as the baselines we test. More
specifically, the baselines include (1) a CNN-based DQN with confounded demonstrator data (Conf.
DQN), (2) an LSTM-based DQN with confounded demonstrator data (Conf. LSTM-DQN), and (3)
a CNN-based DQN trained directly under masked observations without confounded data (Interv.
DQN). For (1-2), the DQN agent will query the demonstrator for data samples as the Causal-DQN
does. For (3), the DQN agent uses its own policy to sample environment transitions.

For each game, we train the agent for 1 million environment steps. We use 20 parallel environments
to collect samples. At each parallel environment step, a minibatch is sampled to train the agents,
equivalent to an update frequency of 20. We use a batch size of 512, a replay buffer of 100K in size,
and a learning rate of 5e⇓4 to accelerate convergence. Other hyperparameters are the same as in [62].
All results presented in this section are evaluation performances where we test each trained agent in
the Atari game with masked observations. Curves in Fig. 8 are generated by evaluating the agent
periodically in a separate evaluation environment, not from training returns.

Data Preparation and Model Architecture. We use the standard Atari game preprocessing for the
input to the agents except that we resize the input to be 64↓64 to align with the size requirement of
the demonstrator [2], a competitive actor-critic agent with deep residual blocks and LSTM layers.
Other differences in input preprocessing for the demonstrator are that (1) the demonstrator takes
a single colored frame as the input per each time step, and (2) the demonstrator has access to the
original full screen observation while the learners only has access to a masked partial screen. For all
DQN tested, we adopt Double DQN [102] to stabilize learning. The CNN version follows the set
up of Nature DQN [62] and the LSTM version only replaces the second-to-last linear layer with an
LSTM cell. See App. D for detailed model architectures.

Designing the Confounded Atari Games. In the confounded Atari games, we mask out certain
areas in each game’s observation to prevent the agent from using spurious correlated features. To find
such spurious visual artifacts used by the demonstrators, we apply a perturbation-based approach
[26] to visualize saliency maps of both the actor and the critic of the demonstrator [2]. As shown
in Fig. 2a, in the Pong game, the demonstrator is constantly checking the score board and also the
opponent’s paddle locations, neither of which is necessary for winning since the opponent in Pong
has a fixed policy regardless of the current score and as long as the agent shoot back the ball, there is a
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chance to score. Thus, an intuitive optimal policy should only look at the ball location and the agent’s
own paddle location to decide the move. In Fig. 2b, we mask out those areas and use the masked out
observation as the state input (st) to DQNs while the masked area becomes the confounder ut which
can only be observed by the demonstrator’s policy, i.e., xt ≃ fX(st, ut).

For the remainder of this section, we will first present a few other notable confounded Atari games and
discuss the performance of our proposed Causal-DQN in all 12 confounded Atari games. Specifically,
despite confounding bias, our proposed causal agent is able to obtain an effective policy under masked
observations from the demonstrator’s trajectories. The learned policies demonstrate conservative
behaviors aligned with human intuitions. Overall, Causal-DQN consistently dominates its non-causal
vanilla counterparts in all 12 confounded Atari games in performance.

(a) (b) (c)

Figure 4: (a) A saliency map of the demonstrator’s
policy; (b) a confounded Boxing game where only the
left half of the arena is visible; (c) a saliency map of
Causal-DQN’s policy.

Confounded Boxing. In the original
Boxing, the player controls the white agent
to punch the black one to score. The party
with the higher score when the time runs
out, or any party hitting 100 first, wins the
game. The demonstrator’s policy picks up
an aggressive “brawler” style which pres-
sures the opponent and trades blows in the
center of the arena. Fig. 4a shows the
saliency map of the demonstrator’s policy.

In the confounded Boxing, we mask out
the score/remaining time, the outer area of
the arena, and the right half of the arena. In
words, the agent has impaired eyesight and
cannot keep track of the current score and
remaining time. Our Causal-DQN agent picks up a conservative “rope-the-dope” boxing style which
focuses on defending its ground on the left-hand side of the arena. Fig. 4c shows the saliency map
of such a conservative policy. Perhaps surprisingly, simulation results, shown in Table 1 and Fig. 8,
reveal that despite the limited sensory capabilities, Causal-DQN agent can still achieve similar
performance as the optimal demonstrator, defeating the hard-coded AI opponent.

(a) (b) (c)

Figure 5: (a) A saliency map of the demonstrator’s
policy; (b) a confounded Gopher game where the
tunnel and score are masked; (c) a saliency map of
Causal-DQN’s policy.

Confounded Gopher. In the Gopher
game, the player controls a farmer with
a shovel, tasked with protecting a garden
of carrots from a mischievous gopher. The
gopher repeatedly attempts to tunnel un-
derground to steal the carrots. The player
must move horizontally across the screen to
block the gopher’s digging attempts by fill-
ing holes. A shortcut strategy is to follow
the gopher’s location underground closely
so that the farmer is always close to those
newly completed holes. Fig. 5a shows the
saliency map of the demonstrator’s policy.
Our analysis reveals that it manages to pick
up a “proactive” playing strategy, which
actively tracks the gopher’s location and uses this information to adjust the farmer’s position.

On the other hand, in the confounded Gopher game, the gophers’ locations are now masked, and
the agent no longer follows the same “proactive” strategy. Instead, our Causal-DQN picks up an
alternative “reactive” strategy, which will reset the farmer’s position around the center and only move
when a gopher is digging out of the ground. We evaluate the learner’s performance and provide
them in Table 1 and Fig. 8. Interestingly, simulation results show that the “reactive” strategy is more
effective than a “proactive” one, and Causal-DQN is able to outperform the demonstrator’s policy.

Confounded ChopperCommand. In the ChopperCommand game, the agent controls a helicopter
tasked with defending a convoy of trucks from waves of enemy aircraft and helicopters. The
agent must navigate across the desert landscape, shooting down enemies while avoiding incoming
fire. Successfully protecting the convoy and eliminating threats increases the player’s score, while
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Table 1: Average evaluation returns of agents on the 12 confounded Atari games trained with 1M
environment steps and aggregated normalized returns concerning the demonstrator’s performance.
Bold numbers indicate the best-performing methods. All results are averaged over 5 seeds except that
column Random is from [2]. Causal-DQN significantly outperforms other DQN baselines.

Game Demonstrator Random Interv. DQN Conf. DQN Conf. LSTM-DQN Causal-DQN (ours)

Amidar 232.4 5.8 44.0 37.8 59.0 282.6

Asterix 3080.6 210.0 650.0 429.0 479.0 2587.0

Boxing 89.0 0.1 -0.62 -9.8 -6.9 71.5

Breakout 219.2 1.7 2.2 1.2 4.9 131.2

ChopperCommand 1280.0 811.0 1192.0 1076.0 1116.0 1658.0

Gopher 5480.6 257.6 288.8 752.0 485.6 7327.2

KungFuMaster 35400.0 258.5 12416.0 13674.0 6526.0 44196.0

MsPacman 2316.8 307.3 1191.6 881.8 787.4 1747.6

Pong 20.8 -20.7 -20.8 -20.8 -20.4 21.0

Qbert 4420.6 163.9 322.5 208.5 253.5 4458.5

RoadRunner 16560.6 11.5 1154.0 1168.0 484.0 27414.0

Seaquest 1412.4 68.4 237.2 281.6 164.8 980.0

Normalized Mean (′) 1.00 0.00 0.13 0.10 0.09 1.04

Normalized Median (′) 1.00 0.03 0.13 0.14 0.10 1.01

Normalized IQM (′) 1.00 0.03 0.13 0.13 0.11 1.02

allowing enemy fire to destroy the trucks results in lost points or lives. At the bottom of the screen,
a mini-map/radar is showing incoming trucks and enemies. Fig. 5a shows the saliency map for the
demonstrator’s policy. It learns to utilize the radar information to “look ahead.”

(a) (b) (c)

Figure 6: (a) A saliency map of the demonstrator’s
policy; (b) a confounded ChopperCommand game with
the minimap and score/lives masked; (c) a saliency map
of Causal-DQN’s policy.

We next consider a confounded Chopper-
Command game where the chopper loses
its radar and other sensor devices. As a re-
sult, the mini-map area, current score, and
remaining lives are masked (as shown in
Fig. 6b). By applying Causal-DQN, the
agent picks up a more “spontaneous” play-
ing style, focusing on staying alive and
eliminating opponents upfront. Fig. 6c de-
scribes a saliency map of this “spontaneous”
policy where only nearby opponents are
highlighted. Simulation results in Table 1
and Fig. 8 reveal that Causal-DQN out-
performs other baselines significantly and
even surpasses the demonstrator’s policy despite having a simpler neural network architecture.

Figure 7: Normalized mean and normalized IQM scores.
Causal-DQN achieves a normalized mean return of 1.04
and a normalized IQM of 1.02.

Overall Performance. Table 1 provides
the best mean returns for all 12 confounded
Atari games across trials, along with mean
return normalized by demonstrator’s perfor-
mance and normalized interquantile mean
(IQM). We see Causal-DQN consistently
outperforms other non-causal baselines by
a big margin. In 7/12 games, our proposed
method even surpasses the demonstrator
with full observations and a way more com-
plex architecture [2]. This could be due
to the reason that the demonstrator, though powerful in representation learning, may suffer from
observational overfitting [91] and rely on spurious visual features to make decisions. Both prior
work and our work have empirically verified this by using saliency maps [26]. Masking out those
spurious features indeed poses a non-trivial challenge to the DQN. From Table 1, we see that the
vanilla DQN with interventional data under masked observations (Interv. DQN) hardly achieves any
meaningful scores in 1 million environment steps. Even with the help of LSTM cells or confounded
data from a performing demonstrator, the DQN still cannot learn. Only with the causal bound, the
same architecture (Nature DQN) can recover or even surpass the demonstrator’s performance despite
of using masked observations and a shallow small CNN as the feature extractor. In Fig. 7, we also
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Figure 8: Average evaluation performance for 12 confounded Atari games. During training over the
1M environment steps, we evaluate the agent every 100K steps for 10 episodes each time. The curve
is further averaged over 5 seeds with one standard deviation across trials as the shaded area.

provide stratified bootstrap confidence intervals for the normalized mean and normalized IQM scores
as recommended by Agarwal et al. [1]. We can see clearly that our proposed Causal-DQN is able to
recover the expert demonstrator’s performance even under impaired sensors. And to get a sense of
the sample efficiency of Causal-DQN, in Fig. 8, we report the evaluation performance during training
of all 12 confounded Atari games. Causal-DQN converges uniformly in less than 1 million steps in
all games. See App. E for more results.

5 Conclusions

This paper investigates deep reinforcement learning from off-policy data collected by a different be-
havior policy through a causal lens. Particularly, we focus on a generalized setting where confounding
biases cannot be ruled out a priori, which poses significant challenges to standard off-policy evalua-
tion algorithms. We first extend the celebrated Bellman equation to the causal Bellman equation that
lower bounds the agent’s expected return from confounded observations. Building on this extension,
we then propose a novel Causal-DQN algorithm that could obtain an effective policy from off-policy
data even when unobserved confounders generally exist. Finally, we evaluate our proposed algorithm
in twelve confounded Atari games, showing that the causal approach consistently dominates standard
DQN algorithm with different feature extractors. Future works include integrating policy gradients
with the causal Bellman equation and exploring confounded high dimensional continuous control.
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A Related Work

Off-Policy Learning. Off-policy learning has a long history in RL dating back to the classic
algorithms of Q-learning [106, 107], importance sampling [39, 95], and temporal difference [66, 77].
Recently, people also propose to utilize offline datasets to warm start the training [17, 51, 67],
augmenting online training replay buffer [8, 92] or incorporating imitation loss with offline data [46,
117]. However, these work rely on a critical assumption that there is no unobserved confounders
in the environment. While this assumption is generally true when the off-policy data is collected
by an interventional agent, data generated by potentially unknown sources can easily break this
assumption [54]. We will introduce more on the confounding robust off-policy learning next.

Causal Reinforcement Learning for Off-Policy Learning When the no unobserved confounding
assumption does not hold, one would need to either identify the reward and transition distributions
before evaluating policy values or bound the possible policy values. There is a rich line of literature
in identifying policy values directly from confounded data [13, 28, 61, 88]. But they usually invoke
other critical learning assumptions such as the existence of bridge functions in the line of proximal
causal inference literature [97]. On the other hand, without further assumptions, one can utilize the
bounding method to account for the whole range of possible policy values. Seminal work of Manski
[60] developed the first bounds on causal effects in non-identifiable settings using observational data
in the single-stage treatment model with contextual information (i.e., a contextual bandit model).
These bounds were then expanded to the instrumental variable setting [7, 35], to partially identify
counterfactual probabilities of causation [99], to construct reward shaping functions automatically
[55]. This work is inspired by a recent work of Zhang & Bareinboim in partially identifying the
policy values via bounding [114].

Robust Reinforcement Learning Unlike reinforcement learning in standard MDPs, robust reinforce-
ment learning assumes that the parametrization of the transition probability function is contained in
a set of model parameters which is called the uncertainty set [37, 57, 69, 74, 108–110]. The goal
of the agent is to learn a robust policy that performs the best under the worst possible case in the
uncertainty set. Similar problems have been studied under the rubrics of safe policy learning [24, 98]
or pessimistic reinforcement learning [59]. Robust RL algorithms with provable guarantees have
been proposed in tabular settings or under the assumptions of linear functions [5, 56, 81, 96, 103].
Combined with the computational framework of deep learning, robust RL algorithms have been
extended to complex, high-dimensional domains [75, 111]. More recently, [72] proposed Robust
Fitted Q-Iteration (RFQI) to learn the best possible robust policy from offline data with theoretical
guarantees on the performance of the learned policy. Our work differs from robust RL methods
since it does not require a pre-specified uncertainty set of model parameters. Instead, we construct
the ignorance region over the underlying system dynamics from the confounded observational data
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using partial causal identification. Based on the learned uncertainty set, we then derived closed-form
bounds over the optimal interventional Q-value functions.

Model-Free Deep Reinforcement Learning Model-free deep reinforcement learning has seen
substantial advancements through the evolution of value-based methods, particularly those building
on the foundational Deep Q-Network (DQN)[62]. While DQN introduced the use of deep neural
networks to approximate Q-values from high-dimensional sensory inputs, it suffered from issues
such as overestimation bias, instability, and poor data efficiency. These challenges prompted a series
of algorithmic improvements. Double DQN [102] addresses overestimation by separating action
selection from action evaluation, while Dueling DQN [104] improves representational efficiency
by decoupling value and advantage estimation. Prioritized Experience Replay [83] and Hindsight
Experience Replay [3] enhances data efficiency by sampling more informative transitions. Rainbow
DQN [32] effectively combines these ingredients, along with multi-step learning, distributional
Q-learning, and noisy networks, resulting in one of the strongest baselines in Atari environments.

To scale value-based methods to more complex tasks and hardware infrastructures, subsequent works
introduced distributed and more flexible architectures. IMPALA (Importance Weighted Actor-Learner
Architectures) [22] tackles the inefficiency of distributed policy learning by decoupling acting and
learning processes and correcting the resulting off-policy updates with the V-trace algorithm, enabling
efficient parallel training at scale. R2D2 (Recurrent Experience Replay in Distributed Reinforcement
Learning) [47] enables recurrent architectures to be trained off-policy in distributed settings with
experience replay, supporting partial observability and long time horizons. Agent57 [4] further builds
on R2D2, combining exploration bonuses from Random Network Distillation [20], meta-learning
of exploration strategies, and population-based training, becoming the first agent to surpass human
performance on all 57 Atari games. More recently, the Bigger, Better, Faster (BBF) framework
[87] pushes the scalability frontier by optimizing infrastructure, neural network design, and training
pipelines, enabling the training of large-scale agents with dramatically improved performance and
sample efficiency. These innovations collectively mark a significant advancement toward more
scalable and generalizable value-based deep reinforcement learning agents.

Note that our proposed Causal Bellman Optimality Equation does not require specific reinforcement
learning algorithm implementations. In this work, we choose DQN as the base algorithm only for
its simplicity given our goal of showcasing a practical implementation of the proposed result in a
straightforward way. It is possible to extending the causal Q-learning update in Eq. (8) to be used
with more advanced deep RL algorithms (e.g., Rainbow [32], IMPALA [22], and BBF [87]) so that
one could enable more powerful agents in confounding settings, which we will leave for future work.

B Proof Details

This section entails the proof for Prop. 3.1. We also prove that our Causal Bellman Optimal Equation
(lower bound) has a unique fixed point that is a valid lower bound.
Proposition B.1 (Causal Bellman Optimal Equation (Prop. 3.1)). For a CMDP environment M with
reward signals Yt ⇐ [a, b] ⇒ R, its optimal state-action value function Q→(s, x) ⇑ Q→(s, x) for any
state-action pair (s, x) ⇐ S ↓ X , where the lower bound Q→(s, x) is given by as follows,

Q→(s, x) = P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s↔)max
x→

Q→(s
↔
, x

↔)

)
(12)

+P (¬x | s)
(
a+ εmin

s→
max
x→

Q→(s
↔
, x

↔)

)
(13)

where P (x | s) = P (Xt = x | St = s) and P (¬x | s) = 1 ⇓ P (x | s); T̃ and R̃ are nominal
transition distribution and reward function computed from the observational distribution, i.e.,

T̃ (s, x, s↔) = P (St+1 = s
↔ | St = s,Xt = x) , R̃ (s, x) = E [Yt | St = s,Xt = x] (14)

Proof. Starting from the Bellman Optimal Equation for Q-values, the optimal state action value
function is given by,

Q
→(s, x) = R(s, x) +

∑

s→

T (s, x, s↔)max
x→

Q
→(s↔, x↔) (15)

19



Note that the actions in the reward and transition functions are done by an interventional agent, which
is actually do(x) in the context of a CMDP. Due to the confounding nature of those two distributions,
we can use the natural bounds to bound the interventional reward (R) and transition distribution (T )
with observational data (R̃,T̃ ) [60].

R(s, x) ⇑ R̃(s, x)P (x|s) + aP (¬x|s) (16)
∑

s→

T (s, x, s↔)max
x→

Q
→(s↔, x↔) ⇑

∑

s→

T̃ (s, x, s↔)P (x|s)max
x→

Q
→(s↔, x↔)

+ P (¬x|s)min
s→

max
x→

Q
→(s↔, x↔) (17)

Then we have,

Q
→(s, x) ⇑ R̃(s, x)P (x|s) + aP (¬x|s)+

∑

s→

T̃ (s, x, s↔)P (x|s)max
x→

Q
→(s↔, x↔) + P (¬x|s)min

s→
max
x→

Q
→(s↔, x↔) (18)

where R̃h(s, x) = E[Yh|Sh = s,Xh = x], T̃h is shorthand for T̃h(s, x, s↔) = P (Sh+1 = s
↔|Sh =

s,Xh = x) and P (x|s) = Ph(Xh = x|Sh = s) are estimated from the offline dataset. And a is
a known lower bound on the reward signal, Yh ∞ b. In this step, we lower bound the next state
transition by assuming the worst case that for the action not taken with probability Ph(¬x|s), the
agent transits with probability 1 to the worst possible next state, mins→→ V →

h+1(s
↔↔).

Then after rearranging terms, we have,

Q
→(s, x) ⇑ P (x | s)

(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s↔)max
x→

Q
→(s↔, x↔)

)

+P (¬x | s)
(
a+ εmin

s→
max
x→

Q
→(s↔, x↔)

)
(19)

Optimizing the Q-value function w.r.t this inequality gives us an lower bound on the optimal state
value. Replace the symbol Q→ with Q→ and we have,

Q→(s, x) ⇑ P (x | s)
(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s↔)max
x→

Q→(s
↔
, x

↔)

)

+P (¬x | s)
(
a+ εmin

s→
max
x→

Q→(s
↔
, x

↔)

)
(20)

Next, we will show in Prop. B.2 that this will converge to a unique fixed point which is a valid lower
bound of the optimal state-action value function.
Proposition B.2 (Convergence of Causal Bellman Optimal Equation in Stationary CMDPs). The
Causal Bellman Optimality Equation converges to a unique fixed point which is also a lower bound
on the optimal interventional state values under the assumption that in the observational data
P (s, x) > 0, ∈s, x in the given CMDP.

Proof. We will first show that the following Causal Bellman Optimality operator (will denote as
“the operator" or T below for simplicity) is a contraction mapping with respect to a weighted max
norm. The major proof technique is from Bertsekas and Tsitsiklis (1989) [16] (Sec 4.3.2). Then by
Banach’s fixed-point theorem [9], this operator has a unique fixed point and updating any initial point
iteratively will converge to it. Then we show this unique fixed point is indeed a lower bound of the
optimal interventional Q-value.

Let the operator T be,

TQ
→(s, x) = P (x | s)

(
R̃ (s, x) + ε

∑

s→,x→

T̃ (s, x, s↔)max
x→

Q→(s
↔
, x

↔)

)

+P (¬x | s)
(
a+ εmin

s→
max
x→

Q→(s
↔
, x

↔)

)
. (21)
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For arbitrary Q-value bound, Q
1
→, Q

2
→, let their initial difference under max-norm be c =

maxs,x
Q1

→(s, x)⇓Q
2
→(s, x)

 ⇑ 0. We can bound their difference after one step update by,

max
s,x

TQ1
→(s, x)⇓ TQ

2
→(s, x)

 ∞ εmax
s,x

P (x|s)
∑

s→

T̃ (s, x, s↔)max
x→

Q1
→(s

↔
, x

↔)⇓Q
2
→(s

↔
, x

↔)


+P (¬x|s)max
s→,x→

Q1
→(s

↔
, x

↔)⇓Q
2
→(s

↔
, x

↔)

 . (22)

Thus, under the operator T , we have non-expansion Q-value differences,

max
s,x

TQ1
→(s, x)⇓ TQ

2
→(s, x)

 ∞ εmax
s,x


P (x|s)

∑

s→

T̃ (s, x, s↔)max
x→

Q1
→(s

↔
, x

↔)⇓Q
2
→(s

↔
, x

↔)


+P (¬x|s)max
s→,x→

Q1
→(s

↔
, x

↔)⇓Q
2
→(s

↔
, x

↔)

)
, (23)

∞ εcmax
s,x


P (x|s)

∑

s→

T̃ (s, x, s↔) + P (¬x|s)

, (24)

= εc. (25)

for all Q1
→, Q

2
→ satisfying c ⇑ maxs,x

Q1
→(s, x)⇓Q

2
→(s, x)

 ⇑ 0. Thus, T is a contraction mapping
with respect to max norm. And there exists a unique fixed point Q→ when we apply this operator T
iteratively to an arbitrary Q-value vector till convergence.

We then show that this fixed point is indeed a lower bound to the optimal interventional Q-value. By
the update rule of T (Eq. (21)), ∈Q(s, x), Q(s, x) ⇑ TQ(s, x). Thus, for the optimal Q-value, we
can have, Q→(s, x) ⇑ limk⇐↑ T

k
Q

→(s, x) = Q→(s, x) where T
k denotes applying T iteratively for

k times. This concludes the proof.

C Confounded Atari Games Design

In this section, we present the detailed design of each confounded Atari games. The core design
idea is that we would like to occlude the part of the screens that contains information useful for
making decisions but is not a significant factor from human players’ perspectives. For example, the
remaining lives and current scores can be an indicator of the difficulty level or even a unique game
level identifier. However, such information is not usually exploited intensively in human game plays.
Thus, we decide to mask out such regions.

Below is a detailed list of confounders design for each game.

• Amidar: The original game screen shows score and remaining life which shouldn’t be the major
factor affecting the policies.

• Asterix: The original game screen shows score and remaining life which shouldn’t be the major
factor affecting the policies.

• Boxing: The original game screen shows score and remaining time which shouldn’t be the
major factor affecting the policies. The right half of the arena can also be excluded since there
is still a wining strategy by staying on the left hand side (as long as the demonstrator has such
demonstrations on the left hand side).

• Breakout: The original game screen shows score and remaining life which shouldn’t be the
major factor affecting the policies.

• ChopperCommand: The original game screen shows score and remaining life which shouldn’t
be the major factor affecting the policies. The mini map can be helpful, but without it, there
should also be a good policy.

• Gopher: The original game screen shows score and remaining life which shouldn’t be the major
factor affecting the policies. The gopher location, while nice to have, can be removed to force
the learning to focus more on the hole not the gopher.

• KungFuMaster: The original game screen shows score and remaining life which shouldn’t be
the major factor affecting the policies.
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• MsPacman: The original game screen shows score and remaining life which shouldn’t be the
major factor affecting the policies.

• Pong: The original game screen shows score and remaining life which shouldn’t be the major
factor affecting the policies. Moreover, one can simply win the game by shoot back every
incoming ball. Thus, we can further block out the opponent’s paddle location.

• Qbert: The color itself is already a good confounder. The demonstrator model [2] is observing
three channel RGB images with LSTM cells. The student model only has grayscale image
stacks. See more details in App. E.

• RoadRunner: The original game screen shows score and remaining life which shouldn’t be the
major factor affecting the policies. Also the sky/desert part are mostly

• Seaquest:The original game screen shows score and remaining life which shouldn’t be the major
factor affecting the policies.

We show each masked atari games in Fig. 9.

D Implementation Details and Experiment Setups

The input to all the networks consists of a stack of four grayscale frames with a frame skipping of four
(so the agent observes a stack of four out of sixteen consecutive actual frames), each down sampled
to 64"64 resolution, allowing the agent to infer temporal dynamics such as ball velocity. To reduce
the inherent flickering from the Atari game, we also apply max pooling over each two consecutive
actual frames. We also downsize the input to 64x64 to align with the input size requirement of the
demonstrator, diamond [2]. The only differences in terms of observations are that (1) the demonstrator
takes a single colored frame (also max-pooled) as input per each time step, and (2) the demonstrator
has access to the original full screen observation while the learners only has access to a masked
partial screen. For the reward, we clip it between [⇓1,+1] to stabilize training.

For the other demonstrator, we use the sebulba model [31] implemented by the CleanRL package
[34]. Its backbone is from Impala [22] architecture and the training algorithm is PPO [86]. Its input
image is in 81x81 but still are stacked grayscale images, the same as what the DQN agents use.
Actions are selected as the argmax action with the biggest logits after applying the Gumbel softmax
trick [38]. The training batch size is also increased to 2048 and is trained with cosine annealing
learning rate scheduler. For all runs, the learning rate is set to 5e-4. For the consine annealing learning
rate scheduler, the minimum learning rate is 1e-6.

For all CNN based DQN networks in this work, we adopt the nature DQN architecture introduced by
Mnih et al. [62]. The network comprises three convolutional layers followed by two fully connected
layers, outputting Q-values for each discrete action. While for LSTM based ones, we only replace
the second to last linear layer in nature DQN with an LSTM cell. For both the linear layers and lstm
cells, we use a hidden dimension of 512. To mitigate overestimation bias in Q-learning, we further
incorporate the Double DQN modification [102], which decouples action selection and evaluation
in the target update by using the online network to select actions and the target network to evaluate
their value. This leads to more stable and accurate value estimates. We also use epsilon greedy for
exploration as the standard DQN algorithm. See Algo. 2 for the full pseudo-code.

To train our model, we use an H100 GPU. On average, for each game and each seed, it takes around
2 hrs and a RAM space of less than 2 GB for using the diamond demonstrator [2]. While it takes up
to 8 hrs for using the sebulba demonstrator [31] from CleanRL [34].

E More Experiment Results

Here we present the experiment results for agents trained with another even stronger demonstrator,
sebulba [31]. From Table 2 and Fig. 10, we can draw the same conclusion that our Causal-DQN is
robust to confounded demonstrator demonstrations and is able to extract useful policies out of such
demonstrations. And we can see that in most of the games, the agent trained by sebulba demonstrator
significantly outperforms the agent trained by diamond demonstrator [2]. This can be an empirical
evidence that our proposed Causal-DQN is able to scale with the demonstrator’s performance. But
his also reveals two limitations of our current approach that when the demonstrator generated data
has zero support in the unmasked area, it is not possible to learn any meaningful behaviors from such
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Figure 9: All 12 confounded Atari games. Masked areas are shown in grey.

demonstrations. In our current setup of the confounded Boxing game, we mask out the right half but
the sebulba demonstrator has a policy of fighting in the right half. Thus, none of the algorithms we
tested can learn. To further verify this intuition, we mask out the left hand side of the arena in the
Boxing game (App. E) and rerun all baselines and Causal-DQN. As expected, as shown in App. E,
our model is now able to converge to the optimal 100 score matching the demonstrator’s performance
while other baeslines still struggle to learn from the confounded demonstrations. Also, when the
demonstrator’s policy is distributional and multi-modal, i.e., there could be multiple best actions,
the deterministic policy like DQN cannot capture such knowledge very well. In Asterix, due to the
non-standard way of using Gumbel softmax implemented by CleanRL [34], there could be different
optimal actions for the same state, posing a challenge to the deterministic learners.

23



Figure 10: Average evaluation performance for 12 confounded Atari games with sebulba [31] as the
demonstrator. During training over the 1M environment steps, we evaluate the agent every 100K steps
for 10 episodes each time. The curve is further averaged over 5 seeds with one standard deviation
across trials as the shaded area.

Figure 11: Normalized mean and normalized IQM scores. Causal-DQN achieves a normalized mean
return of 0.55 and a normalized IQM of 0.59 with sebulba demonstrator.
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Algorithm 2 Causal Deep Q-Learning (Causal-DQN)
1: Initialize replay memory D
2: Initialize action-value function Q→

ϑ and a target network Q→
ϑ↓

, ϑ
≃ ≃ ϑ

3: for episodes = 1, . . . ,M do

4: Sample initial state s1 and obtain preprocessed ϱ1 = ϱ(s1)
5: for t = 1, . . . , T do

6: With probability ς select a random action xt

7: Otherwise sample an action from demonstrator, xt ≃ fX(st, ut)
8: Execute action do(xt) in environment and observe reward yt and state st+1

9: Store transition (st, xt, yt, st+1) in D
10: Sample a minibatch of transitions {(si, xi, yi, si+1)}Bi=1 from D
11: Set value target wi(x) for every action x ⇐ X w.r.t sample (si, xi, yi, si+1),

wi(x) =

{
yi + εmaxx→ Q→(si+1, x

↔; ϑ≃) if x = xi

a+ εmins→ maxx→ Q→(s↔, x↔; ϑ≃) if x ⇔= xi
(26)

12: Perform a gradient descent step on
∑

x

(
wi(x)⇓Q→(si, x; ϑ)

)2 according to Eq. (10)
13: Every Ttarget steps, update ϑ

≃ ≃ ϑ

14: end for

15: end for

Table 2: Average evaluation returns of agents on the 12 confounded Atari games trained with
1M environment steps and aggregated normalized returns concerning the sebulba demonstrator’s
performance [31]. Bold numbers indicate the best-performing methods. All results are averaged over
5 seeds except that column Random is from [2]. Causal-DQN significantly outperforms others.

Game Demonstrator
(sebulba) Random Interv.

DQN
Conf.
DQN

Conf.
LSTM-DQN

Causal-DQN
(diamond)

Causal-DQN
(sebulba)

Amidar 2148.2 5.8 44.0 22.6 24.6 282.6 462.8

Asterix 250182.0 210.0 650.0 369.0 662.0 2587.0 586.0
Boxing 100.0 0.1 -0.62 -7.6 -13.4 71.5 -16.86
Breakout 771.0 1.7 2.2 0.9 2.9 131.2 408.2

ChopperCommand 21682.0 811.0 1192.0 1096.0 918.0 1658.0 5410.0

Gopher 3719.2 257.6 288.8 646.4 132.0 7327.2 4008.0
KungFuMaster 46046.0 258.5 12416.0 8468.0 4844.0 44196.0 39222.0
MsPacman 4538.4 307.3 1191.6 963.6 561.4 1747.6 2346.8

Pong 21.0 -20.7 -20.8 -20.8 -20.6 21.0 21.0

Qbert 23484.0 163.9 322.5 283.5 136.5 4458.5 15136.0

RoadRunner 56056.0 11.5 1154.0 1182.0 1108.0 27414.0 49482.0

Seaquest 1797.2 68.4 237.2 247.6 101.6 980.0 1350.0

Normalized Mean (′) 1.00 0.00 0.00 0.00 0.00 0.53 0.55

Normalized Median (′) 1.00 0.01 0.03 0.04 0.02 0.40 0.59

Normalized IQM (′) 1.00 0.0 0.02 0.02 0.02 0.47 0.59

F Broader Impact

This paper presents work whose goal is to advance the field of Reinforcement Learning. There
are many potential societal consequences of our work, none of which we feel must be specifically
highlighted here. One major reason is that our proposed algorithm aims at extracting knowledge from
another demonstrator model solving Atari games of which we don’t find any profound social impacts
worth mentioning here.

G Limitations

Our current derivation applies to single step Q-value functions. For other objectives for critics like
multi-step returns, eligibility traces and advantages, we need to further extend the Causal Bellman
Equation to accommodate those. As we also show in App. E, the proposed Causal-DQN cannot learn
useful policies when the demonstrator policy has no support in the unmasked area. For example, in
the boxing game, we mask out the right half of the screen while the demonstrator agent’s winning
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Figure 12: Left: The confounded Boxing game with left side arena masked. Right: Evaluation
returns of Causal-DQN and other baselines. The curve is an average over five random seeds with
one standard deviation as the shaded area. The orange curve is our Causal-DQN and other colors are
baselines. Same legend following previous figures.

policy is to fight in the right half. In which case, none of the agent under masked observations is
able to learn. Furthermore, in games like Asterix where a distributional demonstrator has a more
stochastic behavior, our Causal-DQN also cannot outperform others. We hypothesis this to be an
inherent representational limit of deterministic DQN policies.
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